Logics of Transformation

An open research notebook on social science, complexity and the uneven road towards a doctorate in computational social science

Metal Gear Solid 2 and Me

Re-reading this caused me to reflect on how much video games and anime really have driven my interest in my current path of study.

Does this sound similar to the words said by the Colonel? Although I hardly like the idea of that "primordial soup", the idea is exactly the same. The evolution of information into a new higher level. Of course, Kojima takes it far beyond of what Richard Dawkins states directly, not that he wouldn’t have thought that himself though. Also this same idea is taken in Ghost in the Shell, but the implications, consequences and triggers are completely different. In both, we are presented with a life form born from the information flow. In GITS, it searches completeness and to create variety. Meanwhile in MGS2, it seeks a greater good for society. But as we know the best for society is not the best for the individual. These matters will be discussed a bit more later on.

"The new soup is the soup of human culture. We need a name for the new replicator, a noun that conveys the idea of a unit of cultural transmission, or a unit of imitation. `Mimeme’ comes from a suitable Greek root, but I want a monosyllable that sounds a bit like `gene’. I hope my classicist friends will forgive me if I abbreviate mimeme to meme. If it is any consolation, it could alternatively be thought of as being related to `memory’, or to the French word même It should be pronounced to rhyme with `cream’.”
"Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of making pots or of building arches. Just as genes propagate themselves in the gene pool by leaping from body to body via sperms or eggs, so memes propagate themselves in the meme pool by leaping from brain to brain via a process which, in the broad sense, can be called imitation. If a scientist hears, or reads about, a good idea, he passed it on to his colleagues and students. He mentions it in his articles and his lectures. If the idea catches on, it can be said to propagate itself, spreading from brain to brain. As my colleague N.K. Humphrey neatly summed up an earlier draft of this chapter: `… memes should be regarded as living structures, not just metaphorically but technically. When you plant a fertile meme in my mind you literally parasitize my brain, turning it into a vehicle for the meme’s propagation in just the way that a virus may parasitize the genetic mechanism of a host cell. And this isn’t just a way of talking — the meme for, say, "belief in life after death" is actually realized physically, millions of times over, as a structure in the nervous systems of individual men the world over.’"

The term “meme” coined by Dawkins in this text is later used by Masamune Shirow in the manga version of GITS. In MGS though, what is the real purpose of this "higher level simulation" of Shadow Moses? As the Colonel states a system for controlling human will and consciousness.” Then, S3 (Selection for Societal Sanity) is a model that was created to do an analog process to natural selection in the information medium: Cultural Selection. The only difference is that it would be controlled. It is a curious case that the life form that evolved from information is now trying to regulate information…. or isn’t it? After all we, as a species, are trying to understand and control the genetic information for our own benefit. Genetic manipulation. Enhancements, curing and preventing diseases. In the same way, this intelligence is trying to regulate the flow that created it in order to prevent future catastrophe. This catastrophe of the world ends not with a bang but a whimper is the same as having the genetic pool contain information that is useless. The thing that happens when preventing natural selection by keeping alive the individuals that were supposed to die. You can view this as genetic manipulation to make our genes do as we want, but in a higher level.

Review: Christian Blum and Daniel Merkle (eds), Swarm Intelligence

This is a really useful edited compilation on swarm intelligence in a host of different fields. Particularly of value are the chapters on biological swarm intelligence and swarm robotics. 

The biological swarming chapter gives you a good appreciation for the kinds of omissions computer scientists and roboticists make when using biology as a model for computational intelligence and embodied intelligent systems.


John Von Neumann and Williams storage tubes at the Institute for Advanced Study (IAS) machine, 1952. The IAS machine was a 40-bit word binary computer that had 5.1 kilobytes of memory.

I love everything about IAS. One of America’s greatest research institutions. 


John Von Neumann and Williams storage tubes at the Institute for Advanced Study (IAS) machine, 1952. The IAS machine was a 40-bit word binary computer that had 5.1 kilobytes of memory.

I love everything about IAS. One of America’s greatest research institutions. 

Some New Reading

As readers know, I alternate reading based on need and interest. 

Currently reading: 

Felleisen, Findler, Flatt, and Krishnamurthi, How to Design Programs

Abelson, Sussman, and Sussman, Structure and Interpretation of Computer Programs

National Academy of Sciences, Behavioral Modeling and Simulation: From Individuals to Societies

Luger, Stubbenfield, AI Algorithms, Data Structures, and Idioms: In Prolog, Java, and Lisp. 

These are reads for schoolwork. The NAC compilation is assigned and the rest are self-reading I am doing to get better at functional programming and program design, and the specific AI programming style. 

Social Media, Framing, and Machine Learning

Some interesting comments by Alex Hanna here

Her second question:

"What was going on in the none category? If not for mobilization, how else were the members in this Facebook group using this platform? Hanna clearly could not address everything in the limited space in this article, but I hope his future articles will unpack the ambiguity in this none category and suggest some conclusions about what the users were saying in these posts.”

Something which I didn’t explore in the article but I did in several earlier drafts of the master’s from which it was drawn was the idea of discussions around issues, the idea drawing from the well-worn path of the social movement framing perspective. But it was harder to discern whether several unified claims were emerging. I think it’d be a worthwhile project for folks to explore these kinds of data for emergent claims. This may be one place where topic modeling is a more adequate tool for the job.

I appreciate Nelson’s review and hope to see more machine learning used to address existing questions in the social movement literature.

Gray and Friedman in IJ

Besides me ( :) ), you should check out some pieces by Colin S. Gray and Brett Friedman. 


Second, many scholars appear to be resistant to the conceptually, perhaps even morally, practical recognition of the implications of fact that all ‘policy’ is made by political process, and that that process, everywhere and in all periods, is run and dominated by the people who succeed in being relatively the most influential over others. The substantive content of policy is made in a process of political negotiation among the people and organizations who contend for power, as they must. Decisions on national defence are taken politically, usually with input from subject-specific experts and interests. But, in all systems of governance politics ultimately rules. Prudent assessment concerning the maintenance of their preeminent popular influence flags to political leaders where the limits of the politically tolerable most probably lie. This is not to be critical, it is simply to recognize that we humans run our affairs, including our security affairs, by the means of a political process that is geared to generate power as influence, not prudent policy. Policy does not emerge, pristine and unsullied by unduly subjective emotions, as the ever dynamic product of objective expert analysis.[xviii] This is not to claim that political process will be indifferent to argument with evidence of apparent national danger. But it is to say that strategic theorists and defence analysts (like this author) need to appreciate the humbling professional truth that their contribution to debate on public policy always can be trumped by politics.

Worth reading solely for that tidbit. This is the real Clausewitzian approach to understanding the policy-strategy distinction and the truth behind the “politics by other means” statement. 


Conventional armies and guerrilla organizations have no monopoly on any one tactic or set of tactics, even combined arms. A complex attack that combines an IED strike on an entry control point followed up by infiltration attacks is a form of combined arms. The principles of warfare and technological change drive soldier and guerrilla alike towards the same tactical adaptations. For example, the devastating capability of field artillery and close air support since the early 20th century has made large unit concentrations more and more dangerous. In fact, they are nearly suicidal. Ideas of front lines and set-piece battles still ensconced in doctrine are vestigial. Soldiers may enjoy more training than the guerrilla before they arrive on the battlefield, but the guerrilla’s deficit is quickly reduced in the harshest of schools. The only tangible differences between conventional and non-conventional organizations are uniforms, codified regulations, and official designation. History shows that such pomp and circumstance is no guarantor of success in battle. Speaking tactically, there is no “guerrilla” system or “conventional” system. There is simply good tactics, and the guerrilla and the soldier can become equally adept at them. In other words, “irregular” always refers to actors, not the tactics that actors utilize. When combatants as varied as the Lashkar-e-Taiba[viii] in Mumbai, the US Army and Marine Corps, and developing armies like the Somali National Army[ix] are coming to the same conclusions and utilizing the same tactics in vastly different contexts, the idea that a true guerrilla/soldier dichotomy exists falls apart.

This is a great piece, and I’d be interested in seeing if Friedman could go beyond Biddle and perhaps even in future work look at guerrilla uses of Archer Jones’ four basic weapons systems combinations

Books Received

Kenneth De Jong, Evolutionary Computation: A Unified Approach

Claudio Cioffi-Revilla, Introduction to Computational Social Science

Michael Burleigh, Small Wars, Faraway Places: Global Insurrection and the Making of the Modern World

Paul Graham, ANSI Common Lisp

E.O. Wilson, On Human Nature

Robin Dunbar, The Human Story


Plot of a smoothing spline estimating, at the level of the Swiss canton, the association between immigrants as a share of the population (x-axis) and votes in favor of a referendum that would restrict immigration (y-axis).
Done using the 'gam' package in R. Data via Alexandre Afonso.


Plot of a smoothing spline estimating, at the level of the Swiss canton, the association between immigrants as a share of the population (x-axis) and votes in favor of a referendum that would restrict immigration (y-axis).

Done using the 'gam' package in R. Data via Alexandre Afonso.

A Word of Caution to Statistical and Computational Modelers


"These amazing simulations end up sounding even better than the real thing" —Gotye, "State of the Art"

Gotye, I appreciate your attempt at interdisciplinary. But despite my own vulnerability to legitimizing “stay in your lane” statements, I’ll offer this as a response. You should focus on making non-crappy music first before offering me insights about modeling and simulation that Derrida said first and better. 

I spent a good deal of time clenching my teeth when your one hit came on the radio. 

Interesting Quote on Politics and Computation

Consider the following questions:

  1. A leader needs to form a coalition in order to ensure security against a powerful adversary. Given a set of potential allies, what are the possible combinations that might produce successful, winning coalitions?

  2. A person involved in a disaster faces a set of competing priorities (safety, family, shelter, neighbors, supplies), which can induce severe frustration, compounded by fear and uncertainty. Which course of action is best, or at least satisfactory?

  3. A country affected by climate change must choose from among a set of competing policies, finite resources, and imperfect information. How can policy analysts arrive at defensible recommendations for policy-makers?

Questions such as these require complex social computations, not just in terms of crude costs and benefits, but also in probabilistic assessments, alternative combinatorial arrangements, fitness assessments with respect to known empirical patterns, and other computational features. The necessary science (social or natural) may also be incomplete, so allowance must be made for deep uncertainty—not just risk with known probability distributions. And yet, as scientists we wish to obtain computable answers to questions such as the three listed above.

From 63-64 of Claudio Cioffi-Revilla, Introduction to Computational Social Science, 2014.